

# **JEE I NEET I Foundation**





# MOTION<sup>™</sup> JEE MAIN 2021

- 1. Zener breakdown occurs in a p-n junction having p and n both:
  - lightly doped and have wide depletion layer.
  - (2) heavily doped andhave narrow depletion layer.
  - (3) heavily doped and have wide depletion layer.
  - lightly doped and have narrow depletion layer. (4)

Ans. (2)

- The zener breakdown occurs in the heavily doped p-n junction diode. Heavily doped p-n Sol. junction diodes have narrow depletion region.
- 2. According to Bohr atom model, in which of the following transitions will the frequency be maximum?

(1)n=2 to n=1 (2)n=4 to n=3 (3)n=5 to n=4 (4)n=3 to n=2

**(1)** Ans.

Sol.

f is more for transition from n = 2 to n = 1.

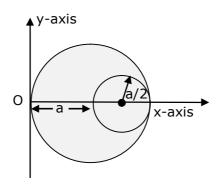
3. An X-ray tube is operated at 1.24 million volt. The shortest wavelength of the produced photon will be: (1)  $10^{-2}$  nm (2) $10^{-3}$  nm (3) $10^{-4}$  nm (4) $10^{-1}$  nm

(2) Ans.

Sol.

$$\begin{split} \lambda_{min} &= \frac{hc}{eV} \\ \lambda_{min} &= \frac{1240nm - eV}{1.24 \times 10^6} \\ \lambda_{min} &= 10^{-3}nm \end{split}$$

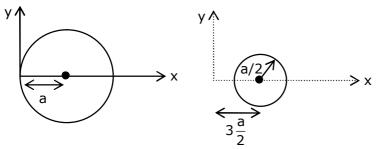
- 4. On the basis of kinetic theory of gases, the gas exerts pressure because its molecules:
  - suffer change in momentum when impinge on the walls of container.
  - continuously stick to the walls of container. (2)
  - (3) continuously lose their energy till it reaches wall.
  - (4) are attracted by the walls of container.


Ans. **(1)** 

On the basis of kinetic theory of gases, the gas pressure is due to the molecules suffering Sol. change in momentum when impinge on the walls of container.

Toll Free: 1800-212-1799

## **Motion**<sup>®</sup>


**5.** A circular hole of radius  $\left(\frac{a}{2}\right)$  is cut out of a circular disc of radius 'a' shown in figure. The centroid of the remaining circular portion with respect to point 'O' will be :



- $(1)\frac{10}{11}a$
- $(2)\frac{2}{3}a$
- $(3)\frac{1}{6}a$
- $(4)\frac{5}{6}a$

Ans. (4)

**Sol.** Let  $\sigma$  is the surface mass density of disc.



$$X_{com} = \frac{(\sigma \times \pi a^2 \times a) - (\sigma \frac{\pi a^2}{4} \times \frac{3a}{2})}{\sigma \pi a^2 - \frac{\sigma \pi a^2}{4}}$$

$$X_{com} = \frac{a-3\frac{a}{8}}{1-\frac{1}{4}}$$

$$X_{com} = \frac{\frac{5a}{8}}{\frac{3}{4}}$$

$$X_{com} = \frac{5a}{6}$$

Toll Free: 1800-212-1799

## MOTION<sup>™</sup> JEE MAIN 2021

6. Given below are two statements:

Statement I: PN junction diodes can be used to function as transistor, simply by connecting

two diodes, back to back, which acts as the base terminal. **Statement II:** In the study of transistor, the amplification factor  $\beta$  indicates ratio of the collector current to the base current.

In the light of the above statements, choose the correct answer from the options given below.

- Statement I is false but Statement II is true. Both Statement I and Statement II are true
- Statement I is true but Statement II is false. Both Statement I and Statement II are false

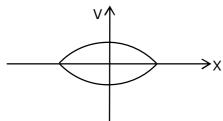
Ans. Sol.

Statement 1 is false because in case of two discrete back to back connected diodes, there are four doped regions instead of three and there is nothing that resembles a thin base region between an emitter and a collector.

Statement-2 is true, as

$$\beta = \frac{I_{\text{C}}}{I_{\text{B}}}$$

7. When a particle executes SHM, the nature of graphical representation of velocity as a function of displacement is:


(1)elliptical

- (2)parabolic
- (3)straight line
- (4)circular

Ans. **(1)** Sol.

We know that is SHM;

$$V = \omega \sqrt{A^2 - x^2}$$



elliptical

8. Match List - I with List - II.

List - I

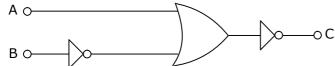
List - II

- (a) Source of microwave frequency (b) Source of infrared frequency
- (c) Source of Gamma Rays
- (d) Source of X-rays

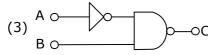
- (i) Radioactive decay of nucleus
- (ii) Magnetron
- (iii) Inner shell electrons
- (iv) Vibration of atoms and molecules
- (v) LASER
- (vi) RC circuit

Choose the correct answer from the options given below:

- (1)(a)-(ii),(b)-(iv),(c)-(i),(d)-(iii)
- (2)(a)-(vi),(b)-(iv),(c)-(i),(d)-(v)
- (3) (a)-(ii),(b)-(iv),(c)-(vi),(d)-(iii)
- (4) (a)-(vi),(b)-(v),(c)-(i),(d)-(iv)


Ans.

- Sol. (a) Source of microwave frequency - (ii) Magnetron
  - (b) Source of infra red frequency (iv) Vibration of atom and molecules
  - (c) Source of gamma ray (i) Radio active decay of nucleus
  - (d) Source of X-ray (iii) inner shell electron


Toll Free: 1800-212-1799

## MOTION\*

9.



The logic circuit shown above is equivalent to:



Ans.

(2) Sol.

$$C=\overline{\overline{A+\overline{B}}}$$

$$C = \overline{A}.B$$

10. If the source of light used in a Young's double slit experiment is changed from red to violet:

(1)the fringes will become brighter.

(2)consecutive fringe lineswill come closer.

(3)the central bright fringe will become a dark fringe.

(4)the intensity of minima will increase.

Ans. **(2)** 

Sol. 
$$\beta = \frac{\lambda D}{d}$$

As 
$$\lambda_{v} < \lambda_{R}$$

$$\Rightarrow \beta_{\mathsf{v}} < \beta_{\mathsf{R}}$$

:. Consecutive fringe line will come closer.

∴ (2)

11. A body weighs 49 N on a spring balance at the north pole. What will be its weight recorded on the same weighing machine, if it is shifted to the equator?

[Use 
$$g = \frac{GM}{R^2} = 9.8 \text{ ms}^{-2}$$
 and radius of earth,  $R = 6400 \text{ km}$ .]

(1)49 N

(2) 49.83 N

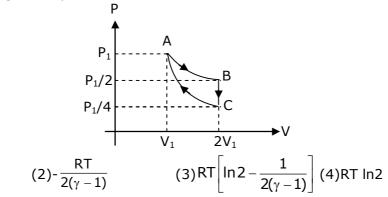
(3) 49.17 N

(4) 48.83 N

(4) Ans.

At north pole, weight Sol.

$$Mg = 49$$


$$g' = g - \underline{\omega}^2 R$$

$$\Rightarrow$$
 Mg' = M(g- $\omega^2$  R)

 $\Rightarrow$  weight will be less than Mg at equator.

Toll Free: 1800-212-1799

12. If one mole of an ideal gas at  $(P_1, V_1)$  is allowed to expand reversibly and isothermally (A to B) its pressure is reduced to one-half of the original pressure (see figure). This is followed by a constant volume cooling till its pressure is reduced to one-fourth of the initial value ( $B\rightarrow C$ ). Then it is restored to its initial state by a reversible adiabatic compression (C to A). The net workdone by the gas is equal to:



Sol. AB → Isothermal process

 $W_{AB} \rightarrow nRT \ln 2 = RT \ln 2$ 

BC → Isochoric process

 $W_{BC} = 0$ 

(1)0

 $CA \rightarrow Adiabatic process$ 

$$\begin{split} W_{CA} &= \frac{P_1 V_1 - \frac{P_1}{4} X 2 V_1}{1 - \gamma} = \frac{P_1 V_1}{2(1 - \gamma)} = \frac{RT}{2(1 - \gamma)} \\ W_{ABCA} &= RT \ell n2 + \frac{RT}{2(1 - \gamma)} \\ &= RT \left[ \ell n2 - \frac{1}{2(\gamma - 1)} \right] \end{split}$$

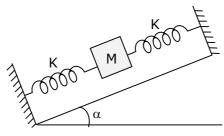
The period of oscillation of a simple pendulum is  $T = 2\pi \sqrt{\frac{L}{a}}$ . Measured value of 'L' is 1.0 m from meter **13**.

scale having a minimum division of 1 mm and time of one complete oscillation is 1.95 s measured from stopwatch of 0.01 s resolution. The percentage error in the determination of 'g' will be : (1)1.33 % (2)1.30 % (3)1.13 % (4)1.03 %

Sol. 
$$T = 2\pi \sqrt{\frac{\ell}{g}}$$

$$T^{2} = 4\pi^{2} \left[\frac{\ell}{g}\right]$$

$$g = 4\pi^{2} \left[\frac{\ell}{T^{2}}\right]$$


$$\frac{\Delta g}{g} = \frac{\Delta \ell}{\ell} + \frac{2\Delta T}{T}$$

$$= \left[\frac{1mm}{1m} + \frac{2(10 \times 10^{-3})}{1.95}\right] \times 100$$

Toll Free: 1800-212-1799

## **Motion**

**14.** In the given figure, a body of mass M is held between two massless springs, on a smooth inclined plane. The free ends of the springs are attached to firm supports. If each spring has spring constant k, the frequency of oscillation of given body is:



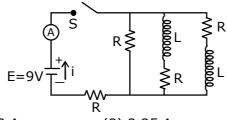
$$(1) \qquad \frac{1}{2\pi} \sqrt{\frac{2k}{Mg \sin \alpha}}$$

$$(2)\frac{1}{2\pi}\sqrt{\frac{k}{Mg\sin\alpha}}$$

$$(3) \qquad \frac{1}{2\pi} \sqrt{\frac{2k}{M}}$$

$$(4)\frac{1}{2\pi}\sqrt{\frac{k}{2M}}$$

Ans. (1)


**Sol.** Equivalent K = K + K = 2K

Now, 
$$T = 2\pi \sqrt{\frac{m}{K_{eq}}}$$

$$\Rightarrow T = 2\pi \sqrt{\frac{m}{2k}}$$

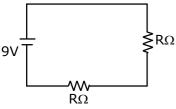
$$\therefore f = \frac{1}{2\pi} \sqrt{\frac{2k}{m}}$$

**15.** Figure shows a circuit that contains four identical resistors with resistance  $R=2.0~\Omega$ . Two identical inductors with inductance L=2.0~mH and an ideal battery with emf E=9.V. The current 'i' just after the switch 's' is closed will be :



(1) 9A

(2) 3.0 A


(3) 2.25 A

(4) 3.37 A

Ans. (3)

**Sol.** When switch S is closed-

Toll Free: 1800-212-1799



Given: v = 9vFrom V = IR

$$I = \frac{v}{R}$$

$$R_{eq.} = 2 + 2 = 4\Omega$$

$$I = \frac{9}{4} = 2.25 A$$

The de Broglie wavelength of a proton and  $\alpha$ -particle are equal. The ratio of their velocities is : 16.

- (3) 1:4

(2) Ans.

From De-broglie's wavelength:-Sol.

$$\lambda = \frac{h}{mv}$$

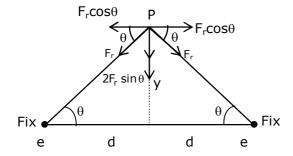
Given  $\lambda_p = \lambda_\alpha$ 

$$v\alpha \frac{1}{m}$$

$$\frac{v_p}{v_\alpha} = \frac{m_\alpha}{m_p} = \frac{4m_p}{m_p} = \frac{4}{1}$$

17. Two electrons each are fixed at a distance '2d'. A third charge proton placed at the midpoint is displaced slightly by a distance x (x < < d) perpendicular to the line joining the two fixed charges. Proton will execute simple harmonic motion having angular frequency: (m = mass of charged particle)

$$(1) \left(\frac{q^2}{2\pi\epsilon_0 md^3}\right)^{\frac{1}{2}} \qquad (2) \left(\frac{\pi\epsilon_0 md^3}{2q^2}\right)^{\frac{1}{2}} \qquad (3) \left(\frac{2\pi\epsilon_0 md^3}{q^2}\right)^{\frac{1}{2}} \qquad (4) \left(\frac{2q^2}{\pi\epsilon_0 md^3}\right)^{\frac{1}{2}}$$


$$(2) \left( \frac{\pi \epsilon_0 \text{md}^3}{2 \text{q}^2} \right)^{\frac{1}{2}}$$

$$(3) \left(\frac{2\pi\epsilon_0 md^3}{q^2}\right)^{\frac{1}{2}}$$

$$(4) \left( \frac{2q^2}{\pi \epsilon_0 m d^3} \right)^{\frac{1}{2}}$$

Ans.

Sol.



Restoring force on proton :-

Toll Free: 1800-212-1799



$$F_{r} = \frac{2Kq^{2}y}{\left[d^{2} + y^{2}\right]^{\frac{3}{2}}}$$

$$F_r = \frac{2kq^2y}{d^3} = \frac{q^2y}{2\pi\epsilon_0 d^3} = ky$$

$$K = \frac{q^2}{2\pi\epsilon_0 d^3}$$

Angular Frequency :-

$$\omega = \sqrt{\frac{k}{m}}$$

$$\omega = \sqrt{\frac{q^2}{2\pi\epsilon_0 md^3}}$$

- 18. A soft ferromagnetic material is placed in an external magnetic field. The magnetic domains :
  - (1) decrease in size and changes orientation.
  - (2) may increase or decrease in size and change its orientation.
  - (3) increase in size but no change in orientation.
  - (4) have no relation with external magnetic field.

#### Ans. (2)

- **Sol.** Atoms of ferromagnetic material in unmagnetised state form domains inside the ferromagnetic material. These domains have large magnetic moment of atoms. In the absence of magnetic field, these domains have magnetic moment in different directions. But when the magnetic field is applied, domains aligned in the direction of the field grow in size and those aligned in the direction opposite to the field reduce in size and also its orientation changes.
- **19.** Which of the following equations represents a travelling wave?
  - (1)  $y = Ae^{-x^2}(vt + \theta)$
  - (2)  $y = A \sin(15x 2t)$
  - (3)  $y = Ae^x \cos(\omega t \theta)$
  - (4)  $y = A \sin x \cos \omega t$

#### Ans. (2)

**Sol.** 
$$Y = F(x,t)$$

For travelling wave y should be linear function of x and t and they must exist as  $(x\pm vt)$  Y = A sin  $(15x-2t) \rightarrow$  linear function in x and t.

- **20.** A particle is projected with velocity  $v_0$  along x-axis. A damping force is acting on the particle which is proportional to the square of the distance from the origin i.e.  $ma = -\alpha x^2$ . The distance at which the particle stops :
  - (1)  $\left(\frac{2v_0}{3\alpha}\right)^{\frac{1}{3}}$   $(2)\left(\frac{3v_0^2}{2\alpha}\right)^{\frac{1}{2}}$   $(3)\left(\frac{3v_0^2}{2\alpha}\right)^{\frac{1}{3}}$   $(4)\left(\frac{2v_0^2}{3\alpha}\right)^{\frac{1}{2}}$

#### Ans. Bonus

Toll Free: 1800-212-1799

# MOTION<sup>™</sup> JEE MAIN 2021

Sol. 
$$a = \frac{vdv}{dx}$$
 
$$\int_{v_i}^{v_f} Vdv = \int_{x_i}^{x_f} adx$$
 
$$Given :- v_i = v_0$$
 
$$V_f = 0$$
 
$$X_i = 0$$
 
$$X_f = x$$

From Damping Force : 
$$a = -\frac{\alpha x^2}{m}$$

$$\int_{V_0}^{0} V dV = -\int_{0}^{x} \frac{\alpha x^2}{m} dx$$

$$-\frac{\mathsf{v}_0^2}{2} = \frac{-\alpha}{\mathsf{m}} \left[ \frac{\mathsf{x}^3}{\mathsf{3}} \right]$$

$$x = \left\lceil \frac{3mv_0^2}{2\alpha} \right\rceil^{\frac{1}{3}}$$

1. A uniform metallic wire is elongated by 0.04 m when subjected to a linear force F. The elongation, if its length and diameter is doubled and subjected to the same force will be

Ans. 
$$\frac{\mathbf{Z}}{\mathbf{Sol.}}$$

$$y = \frac{F/A}{\Delta \ell / \ell}$$

$$\Rightarrow \frac{F}{A} = y \frac{\Delta \ell}{\ell}$$

$$\Rightarrow \frac{F}{A} = y \times \frac{0.04}{\ell} \qquad ...(1)$$

When length & diameter is doubled.

$$\Rightarrow \frac{F}{4A} = y \times \frac{\Delta \ell}{2\ell} \qquad ...(2)$$

$$(1) \div (2)$$

$$\frac{\text{F/A}}{\text{F/4A}} = \frac{y \times \frac{0.04}{\ell}}{y \times \frac{\Delta \ell}{2\ell}}$$

$$4 = \frac{0.04 \times 2}{\Delta \ell}$$

$$\Delta \ell = 0.02$$

$$\Delta\ell=2\times10^{-2}$$

Toll Free: 1800-212-1799

## MOTION"

A cylindrical wire of radius 0.5 mm and conductivity  $5 \times 10^7$  S/m is subjected to an electric field 2. of 10 mV/m. The expected value of current in the wire will be  $x^3\pi$  mA. The value of x is \_\_\_\_\_.

Ans.

We know that Sol.

$$J = \sigma E$$

$$\Rightarrow J = 5 \times 10^7 \times 10 \times 10^{-3}$$

$$\Rightarrow$$
 J = 50 × 10<sup>4</sup> A/m<sup>2</sup>

Currentflowing;

$$I = J \times \pi R^2$$

$$I = 50 \times 10^4 \times \pi (0.5 \times 10^{-3})^2$$

$$I = 50 \times 10^{4} \times \pi (0.5 \times 10^{-3})^{2}$$
  

$$I = 5 \times 10^{4} \times \pi \times 0.25 \times 10^{-6}$$

$$I = 125 \times 10^{-3} \pi$$

$$X = 5$$

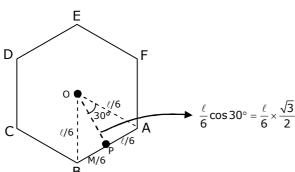
Two cars are approaching each other at an equal speed of 7.2 km/hr. When they see each 3. other, both blow horns having frequency of 676 Hz. The beat frequency heard by each driver will be Hz. [Velocity of sound in air is 340 m/s.]

Ans.

Sol.

Speed = 7.2 km/h = 2 m/sFrequency as heard by A

$$f'_A = f_B \left( \frac{v + v_0}{v - v_s} \right)$$

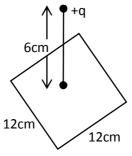

$$f_A' = 676 \left( \frac{340 + 2}{340 - 2} \right)$$

$$f_{\Delta}^{'} = 684Hz$$

$$\therefore \, f_{Beat}^{} = f_A^{'} \, - f_B^{}$$

4. A uniform thin bar of mass 6 kg and length 2.4 meter is bent to make an equilateral hexagon. The moment of inertia about an axis passing through the centre of mass and perpendicular to the plane of hexagon is  $\times 10^{-1} \text{ kg m}^2$ .

Ans. Sol.




Toll Free: 1800-212-1799

MOI of AB about P : 
$$I_{ABp} = \frac{\frac{M}{6} \left(\frac{\ell}{6}\right)^2}{12}$$
MOI of AB about O,
$$I_{AB_O} = \left[\frac{\frac{M}{6} \left(\frac{\ell}{6}\right)^2}{12} + \frac{M}{6} \left(\frac{\ell}{6}\frac{\sqrt{3}}{2}\right)^2\right]$$

$$\begin{split} I_{AB_O} &= \left[ \frac{\frac{M}{6} \left( \frac{\ell}{6} \right)^2}{12} + \frac{M}{6} \left( \frac{\ell}{6} \frac{\sqrt{3}}{2} \right)^2 \right] \\ I_{Hexagon_0} &= 6I_{AB_O} = M \left[ \frac{\ell^2}{12 \times 36} + \frac{\ell^2}{36} \times \frac{3}{4} \right] \\ &= \frac{6}{100} \left[ \frac{24 \times 24}{12 \times 36} + \frac{24 \times 24}{36} \times \frac{3}{4} \right] \end{split}$$

= 
$$0.8 \text{ kgm}^2$$
  
=  $8 \times 10^{-2} \text{ kg/m}^2$ 



Ans. 226

Sol. Using Gauss law, it is a part of cube of side 12 cm and charge at centre so;

$$\phi = \frac{Q}{6\epsilon_0} = \frac{12\mu c}{6\epsilon_0} = 2 \times 4\pi \times 9 \times 10^9 \times 10^{-6}$$
$$= 226 \times 10^3 \text{ Nm}^2/\text{C}$$

**6.** Two solids A and B of mass 1 kg and 2 kg respectively are moving withequal linear momentum. The ratio of their kinetic energies  $(K.E.)_A$ :  $(K.E.)_B$  will be  $\frac{A}{1}$ . So the value of A will be

**Sol.** Given that,  $\frac{M_1}{M_2} = \frac{1}{2}$ 

Also, 
$$p_1 = p_2 = p$$

$$\Rightarrow M_1V_1 = M_2V_2 = p$$

Also, we know that

Toll Free: 1800-212-1799



$$\begin{split} K &= \frac{p^2}{2M} \Rightarrow K_1 = \frac{p^2}{2M_1} \& \Rightarrow K_2 = \frac{p^2}{2M_2} \\ &\Rightarrow \frac{K_1}{K_2} = \frac{p^2}{2M_1} \times \frac{2M_2}{p^2} \Rightarrow \frac{K_1}{K_2} = \frac{M_2}{M_1} = \frac{2}{1} \\ &\Rightarrow \frac{A}{1} = \frac{2}{1} \Rightarrow \therefore A = 2 \end{split}$$

- 7. The root mean square speed of molecules of a given mass of a gas at 27°C and 1 atmosphere pressure is 200 ms<sup>-1</sup>. The root mean square speed of molecules of the gas at 127°C and 2 atmosphere pressure is  $\frac{x}{\sqrt{3}}$  ms<sup>-1</sup>. The value of x will be \_\_\_\_\_.
- Ans. 400 m/s

Sol. 
$$V_{rms}\sqrt{\frac{3RT_1}{M_0}}$$
  
 $200 = \sqrt{\frac{3R \times 300}{M_0}}$  ...(1)  
Also,  $\frac{x}{\sqrt{3}} = \sqrt{\frac{3R \times 400}{M_0}}$  ...(2)  
 $\frac{200}{x/\sqrt{3}} = \sqrt{\frac{300}{400}} = \sqrt{\frac{3}{4}}$   
 $\Rightarrow x = 400 \text{ m/s}$ 

- A series LCR circuit is designed to resonate at an angular frequency  $\omega_0=10^5 rad \, / \, s$  . The circuit draws 16W power from 120 V source at resonance. The value of resistance 'R' in the circuit is \_\_\_\_\_  $\Omega$ .
- Ans. 900

Sol. 
$$P = \frac{V^2}{R}$$
 
$$16 = \frac{120^2}{R} \Rightarrow R = \frac{14400}{16}$$
 
$$\Rightarrow R = 900\Omega$$

9. An electromagnetic wave of frequency 3 GHz enters a dielectric medium of relative electric permittivity 2.25 from vacuum. The wavelength of this wave in that medium wil be  $\_\_\_$  ×10<sup>-2</sup> cm.

Toll Free: 1800-212-1799

**Ans.** 667

Sol. 
$$f = 3GHz$$
,  $\varepsilon_r = 2.25$ 

$$v = \lambda f \Rightarrow \lambda = \frac{v}{f}$$

$$C = \frac{1}{\sqrt{\mu_0 \epsilon_0}}$$

$$v = \frac{1}{\sqrt{\mu_0 \mu_r \epsilon_0 \epsilon_r}} \Rightarrow \lambda = \frac{1}{f.\sqrt{\mu_0 \epsilon_0}.\sqrt{\mu_r \epsilon_r}.f}$$

$$\Rightarrow \lambda = \frac{C}{f.\sqrt{\mu_r}.\sqrt{\epsilon_r}} \Rightarrow \lambda = \frac{3\times 10^8}{3\times 10^9\times \sqrt{1}\times \sqrt{2.25}}$$

$$\Rightarrow \lambda = 667 \times 10^{-2} \, \text{cm}$$

**10.** A signal of 0.1 kW is transmitted in a cable. The attenuation of cable is -5 dB per km and cable length is 20 km. the power received at receiver is  $10^{-x}$ W. The value of x is \_\_\_\_\_.

[Gain in dB = 10 log<sub>10</sub> 
$$\left(\frac{P_0}{P_i}\right)$$
]

Ans. 8

- Sol. Power of signal transmitted :  $P_i = 0.1 \text{ Kw} = 100\text{w}$ 
  - Rate of attenuation = -5 dB/Km
  - Total length of path = 20 km
  - Total loss suffered =  $-5 \times 20 = -100 dB$

Gain in dB = 
$$10 \log_{10} \frac{P_0}{P_i}$$

$$-100=10\log_{10}\frac{P_0}{P_0}$$

$$\Rightarrow \log_{10} \frac{P_i}{P_0} = 10$$

$$\Rightarrow \log_{10} \frac{P_i}{P_0} = \log_{10} 10^{10}$$

$$\Rightarrow \frac{100}{P_0} = 10^{10}$$

$$\Rightarrow P_0 = \frac{1}{10^8} = 10^{-8}$$

$$\therefore x = 8$$

Toll Free: 1800-212-1799

# Motion

Another opportunity to strengthen your preparation

### UNNATI CRASH COURSE JEE Main May 2021

at Kota Classroom

- 40 Classes of each subjects
- Doubt Clearing sessions by Expert faculties
- Full Syllabus Tests to improve your question solving skills
- Thorough learning of concepts with regular classes
- Get tips & trick along with sample papers

Course Fee : ₹ 20,000



Start your **JEE Advanced 2021**Preparation with

## UTTHAN CRASH COURSE

at Kota Classroom

- Complete course coverage
- 55 Classes of each subject
- 17 Full & 6 Part syllabus tests will strengthen your exam endurance
- Doubt clearing sessions under the guidance of expert faculties
- Get tips & trick along with sample papers

Course Fee : ₹ 20,000

